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FILE DOWNLOAD AND STREAMING
SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/197,993, filed Aug. 25, 2008 entitled “FILE
DOWNLOAD AND STREAMING SYSTEM,” which is a
continuation of U.S. patent application Ser. No. 11/125,818,
filed May 9, 2005 entitled “FILE DOWNLOAD AND
STREAMING SYSTEM,” which claims priority to U.S. Pro-
visional Patent Application No. 60/569,127, filed May 7,
2004 entitled “FILE DOWNLOAD AND STREAMING
SYSTEM,” each of which is hereby incorporated by refer-
ence, as if set forth in full in this document, for all purposes.

REFERENCE TO A COMPUTER PROGRAM
LISTING APPENDIX

A listing of tables, formatted as a computer program listing
appendix is submitted on two duplicate compact discs
(“CDs”) and includes Appendices A, B.1 and B.2 as referred
to herein. The computer program listing appendix is hereby
incorporated by reference herein.

FIELD OF THE INVENTION

The present invention relates to encoding and decoding
data in communications systems and more specifically to
communication systems that encode and decode data to
account for errors and gaps in communicated data. In embodi-
ments, data is transmitted over broadcast and/or multicast
wireless networks to receivers.

BACKGROUND OF THE INVENTION

Transmission of files and streams between a sender and a
recipient over a communications channel has been the subject
of'much literature. Preferably, a recipient desires to receive an
exact copy of data transmitted over a channel by a sender with
some level of certainty. Where the channel does not have
perfect fidelity (which covers most all physically realizable
systems), one concern is how to deal with data lost or garbled
in transmission. Lost data (erasures) are often easier to deal
with than corrupted data (errors) because the recipient cannot
always tell when corrupted data is data received in error.
Many error-correcting codes have been developed to correct
for erasures and/or for errors. Typically, the particular code
used is chosen based on some information about the infideli-
ties of the channel through which the data is being transmitted
and the nature of the data being transmitted. For example,
where the channel is known to have long periods of infidelity,
a burst error code might be best suited for that application.
Where only short, infrequent errors are expected a simple
parity code might be best.

Data transmission is straightforward when a transmitter
and a receiver have all of the computing power and electrical
power needed for communications and the channel between
the transmitter and receiver is clean enough to allow for
relatively error-free communications. The problem of data
transmission becomes more difficult when the channel is inan
adverse environment or the transmitter and/or receiver has
limited capability.

One solution is the use of forward error correcting (FEC)
techniques, wherein data is coded at the transmitter such that
a receiver can recover from transmission erasures and errors.
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Where feasible, a reverse channel from the receiver to the
transmitter allows for the receiver to communicate about
errors to the transmitter, which can then adjust its transmis-
sion process accordingly. Often, however, a reverse channel is
not available or feasible. For example, where the transmitter
is transmitting to a large number of receivers, the transmitter
might not be able to handle reverse channels from all those
receivers. As a result, communication protocols often need to
be designed without a reverse channel and, as such, the trans-
mitter may have to deal with widely varying channel condi-
tions without a full view of those channel conditions.

The problem of data transmission between transmitters and
receivers is made more difficult when the receivers need to be
low-power, small devices that might be portable or mobile
and need to receive data at high bandwidths. For example, a
wireless network might be set up to deliver files or streams
from a stationary transmitter to a large or indeterminate num-
ber of portable or mobile receivers either as a broadcast or
multicast where the receivers are constrained in their com-
puting power, memory size, available electrical power,
antenna size, device size and other design constraints.

In such a system, considerations to be addressed include
having little or no reverse channel, limited memory, limited
computing cycles, mobility and timing. Preferably, the design
should minimize the amount of transmission time needed to
deliver data to potentially a large population of receivers,
where individual receivers and might be turned on and off at
unpredictable times, move in and out of range, incur losses
due to link errors, cell changes, congestion in cells forcing
lower priority file or stream packets to be temporarily
dropped, etc.

In the case of a packet protocol used for data transport, a
file, stream or other block of data to be transmitted over a
packet network is partitioned into equal size input symbols
and input symbols are placed into consecutive packets. The
“size” of an input symbol can be measured in bits, whether or
not the input symbol is actually broken into a bit stream,
where an input symbol has a size of M bits when the input
symbol is selected from an alphabet of 2* symbols. In such a
packet-based communication system, a packet oriented cod-
ing scheme might be suitable. A file transmission is called
reliable if it allows the intended recipient to recover an exact
copy of the original file even in the face of erasures in the
network. A stream transmission is called reliable if it allows
the intended recipient to recover an exact copy of each part of
the stream in a timely manner even in the face of erasures in
the network. Both file transmission and stream transmission
can also be somewhat reliable, in the sense that some parts of
the file or stream are not recoverable or for streaming if some
parts of the stream are not recoverable in a timely fashion.
Packet loss often occurs because sporadic congestion causes
the buffering mechanism in a router to reach its capacity,
forcing it to drop incoming packets. Protection against era-
sures during transport has been the subject of much study.

It is known to use chain reaction codes to allow for gen-
eration of an arbitrary number of output symbols from the
input symbols of a file or stream. This has many uses, includ-
ing the generation of output symbols in an information addi-
tive way, as opposed to an information duplicative way,
wherein the latter is where a receiver receives additional data
that duplicates data the receiver already knows. Novel tech-
niques for generating, using and operating chain reaction
codes are shown, for example, in U.S. Pat. No. 6,307,487
entitled “Information Additive Code Generator and Decoder
for Communication Systems” issued to Luby (“Luby 1), U.S.
Pat. No. 6,320,520 issued to Luby et al. entitled “Information
Additive Group Code Generator and Decoder for Communi-
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cation Systems” (hereinafter “Luby 1I”), and U.S. Pat. No.
7,068,729 issued to Shokrollahi et al. entitled “Multi-Stage
Code Generator and Decoder for Communication Systems”
(hereinafter “Shokrollahi”). To the extent permitted, the
entire disclosures of those are herein incorporated herein by
reference for all purposes.

One property of the output symbols produced by a chain
reaction encoder is that a receiver is able to recover the origi-
nal file or block of the original stream as soon as enough
output symbols have been received. Specifically, to recover
the original K input symbols with a high probability, the
receiver needs approximately K+A output symbols. The ratio
A/K is called the “relative reception overhead.” The relative
reception overhead depends on the number K of input sym-
bols, and on the reliability of the decoder. For example, in one
specific embodiment, and where K is equal to 60,000, a
relative reception overhead of 5% ensures that the decoder
successfully decodes the input file or block of the stream with
a probability of at least 1-107%, and where K is equal to
10,000, a relative reception overhead of 15% ensures the
same success probability of the decoder. In one embodiment,
the relative reception overhead of chain reaction codes can be
computed as (13*sqrt(K)+200)/K, where sqrt(K) is the
square root of the number of input symbols K. In this embodi-
ment the relative reception overhead of chain reaction codes
tends to be larger for small values of K.

Luby I, Luby II and Shokrollahi provide teachings of sys-
tems and methods that can be employed in certain embodi-
ments according to the present invention. It is to be under-
stood, however, that these systems and methods are not
required of the present invention, and many other variations,
modifications, or alternatives can also be used.

It is also known to use multi-stage chain reaction
(“MSCR”) codes, such as those described in Shokrollahi and
developed by Digital Fountain, Inc. under the trade name
“Raptor” codes. Multi-stage chain reaction codes are used,
for example, in an encoder that receives input symbols from a
source file or source stream, generates intermediate symbols
therefrom and encodes the intermediate symbols using chain
reaction codes. More particularly, a plurality of redundant
symbols are generated from an ordered set of input symbols to
be transmitted. A plurality of output symbols are generated
from a combined set of symbols including the input symbols
and the redundant symbols, wherein the number of possible
output symbols is much larger than the number of symbols in
the combined set of symbols, wherein at least one output
symbol is generated from more than one symbol in the com-
bined set of symbols and from less than all of the symbols in
the combined set of symbols, and such that the ordered set of
input symbols can be regenerated to a desired degree of
accuracy from any predetermined number, N, of the output
symbols.

For some applications, other variations of codes might be
more suitable or otherwise preferred.

BRIEF SUMMARY OF THE INVENTION

According to one embodiment of the invention, a method
of'encoding data for transmission from a source to a destina-
tion over a communications channel is provided. The method
operates on an ordered set of input symbols and includes
generating a plurality of redundant symbols from the input
symbols. The method also includes generating a plurality of
output symbols from a combined set of symbols including the
input symbols and the redundant symbols, wherein the num-
ber of possible output symbols is much larger than the number
of symbols in the combined set of symbols, wherein at least
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one output symbol is generated from more than one symbol in
the combined set of symbols and from less than all of the
symbols in the combined set of symbols, and such that the
ordered set of input symbols can be regenerated to a desired
degree of accuracy from any predetermined number of the
output symbols. The plurality of redundant symbols is gen-
erated from an ordered set of input symbols to be transmitted
in a deterministic process such that a first set of static symbols
calculated using a first input symbol has a low common
membership with a second set of static symbols calculated
using a second input symbol distinct from the first input
symbol.

According to still another embodiment of the invention, a
system for receiving data transmitted from a source over a
communications channel is provided using similar tech-
niques. The system comprises a receive module coupled to a
communications channel for receiving output symbols trans-
mitted over the communications channel, wherein each out-
put symbol is generated from at least one symbol in a com-
bined set of input symbols and redundant symbols, wherein at
least one output symbol is generated from more than one
symbol in the combined set and less than all of the symbols in
the combined set, wherein the number of possible output
symbols is much larger than the number of symbols in the
combined set, wherein the input symbols are from an ordered
set of input symbols, wherein the redundant symbols are
generated from the input symbols and wherein the plurality of
redundant symbols is generated from an ordered set of input
symbols to be transmitted in a deterministic process such that
a first set of static symbols calculated using a first input
symbol has a low common membership with a second set of
static symbols calculated using a second input symbol dis-
tinct from the first input symbol.

According to yet another embodiment of the invention, a
computer data signal embodied in a carrier wave is provided.

Numerous benefits are achieved by way of the present
invention. For example, in a specific embodiment, the com-
putational expense of encoding data for transmission over a
channel is reduced. In another specific embodiment, the com-
putational expense of decoding such data is reduced. Depend-
ing upon the embodiment, one or more of these benefits may
be achieved. These and other benefits are provided in more
detail throughout the present specification and more particu-
larly below.

A further understanding of the nature and the advantages of
the inventions disclosed herein may be realized by reference
to the remaining portions of the specification and the attached
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a communications system
according to one embodiment of the present invention.

FIG. 2 is a block diagram an encoder according to one
embodiment of the present invention.

FIG. 3 is a simplified block diagram of a method of gener-
ating redundant symbols according to one embodiment of the
present invention.

FIG. 4 is a simplified block diagram of the basic operation
of a static encoder according to one embodiment of the
present invention.

FIG. 5 is a simplified block diagram of a dynamic encoder
according to one embodiment of the present invention.

FIG. 6 is a simplified block diagram of a basic operation of
a dynamic encoder according to one embodiment of the
present invention.
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FIG. 7 is a simplified block diagram of a static encoder
according to one embodiment of the present invention.

FIG. 8 is a simplified block diagram of the basic operation
a static encoder according to one embodiment of the present
invention.

FIG. 9 is a simplified diagram of a method for calculating
encoding parameters according to one specific embodiment
of a static encoder.

FIG. 10 is a simplified flow diagram of a static encoder
according to another embodiment of the present invention.

FIG. 11 is a simplified block diagram of a decoder accord-
ing to one embodiment of the present invention.

FIG. 12 is a simplified flow diagram of an operation of a
decoder according to one embodiment of the present inven-
tion.

FIG. 13 is a simplified flow diagram of an operation of a
decoder according to another embodiment of the present
invention.

FIG. 14 is a simplified flow diagram of an operation of a
decoder according to yet another embodiment of the present
invention.

FIG. 15 is a simplified block diagram of a dynamic decoder
according to one embodiment of the present invention.

FIG. 16 is a simplified block diagram of a static decoder
according to one embodiment of the present invention.

FIG. 17 illustrates source symbol from sub-symbol map-
pings.

FIG. 18 illustrates possible settings of file download
parameters for various file sizes.

FIG. 19 illustrates possible settings of streaming param-
eters for various source block sizes.

FIG. 20 illustrates a form of a matrix that represents a
relationship between source and intermediate symbols.

FIG. 21 illustrates a degree distribution for the degree
generator.

FIG. 22 illustrates a form of the matrix A that can be used
for decoding.

A listing of tables, formatted as a computer program listing
appendix is submitted on two duplicate compact discs
(“CDs”) and includes Appendices A, B.1 and B.2 as described
in this paragraph and are hereby incorporated by reference
herein. Appendix A provides an example of a table of Sys-
tematic Indices J(K). For each value of K, the systematic
index J(K) is designed to have the property that the set of
source symbol triples (d[0], a[0], b[O]), .. ., (d[L-1], a[L-1],
b[L-1]) are such thatthe L intermediate symbols are uniquely
defined, i.e., the matrix A in Section B.5.2.4.2 has full rank
and is therefore invertible. Appendix A provides the list of the
systematic indices for values of K between 4 and 8192 inclu-
sive. The order of the values begins with the index for K=4
and ends with index for K=8192. Appendix B.1 provides an
example of table V ,. These values represent an example set of
values for Table V, described in Section B.5.4.1. Each entry is
a 32-bit integer in decimal representation. The order of the
values is from the first line to the last line. Appendix B.2
provides an example of table V,. These values represent an
example set of values for Table V, described in Section
B.5.4.1. Each entry is a 32-bit integer in decimal representa-
tion. The order of the values is from the first line to the last
line.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

In the specific embodiments described herein, a coding
scheme denoted as “multi-stage coding” is described,
embodiments of which are provided in Shokrollahi.
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Multi-stage encoding, as described herein, encodes the
data in a plurality of stages. Typically, but not always, a first
stage adds a predetermined amount of redundancy to the data.
A second stage then uses a chain reaction code, or the like, to
produce output symbols from the original data and the redun-
dant symbols computed by the first stage of the encoding. In
one specific embodiment of the present invention, the
received data is first decoded using a chain reaction decoding
process. If that process is not successful in recovering the
original data completely, a second decoding step can be
applied.

In embodiments of multi-stage encoding, redundant sym-
bols are generated from the input file or block of the stream
during the first stage of encoding. In these embodiments, in
the second stage of encoding, output symbols are generated
from the combination of the input file or block of the stream
and the redundant symbols. In some of these embodiments,
the output symbols can be generated as needed. In embodi-
ments in which the second stage comprises chain reaction
encoding, each output symbol can be generated without
regard to how other output symbols are generated. Once
generated, these output symbols can then be placed into pack-
ets and transmitted to their destination, with each packet
containing one or more output symbols. Non-packetized
transmission techniques can be used instead or as well.

As used herein, the term “file” refers to any data that is
stored at one or more sources and is to be delivered as a unit
to one or more destinations. Thus, a document, an image, and
a file from a file server or computer storage device, are all
examples of “files” that can be delivered. Files can be of
known size (such as a one megabyte image stored on a hard
disk) or can be of unknown size (such as a file taken from the
output of a streaming source). Either way, the file is a
sequence of input symbols, where each input symbol has a
position in the file and a value.

As used herein, the term “stream” refers to any data that is
stored or generated at one or more sources and is delivered at
a specified rate at each point in time in the order it is generated
to one or more destinations. Streams can be fixed rate or
variable rate. Thus, an MPEG video stream, AMR audio
stream, and a data stream used to control a remote device, are
all examples of “streams” that can be delivered. The rate of
the stream at each point in time can be known (such as 4
megabits per second) or unknown (such as a variable rate
stream where the rate at each point in time is not known in
advance). Either way, the stream is a sequence of input sym-
bols, where each input symbol has a position in the stream and
a value.

Transmission is the process of transmitting data from one
or more senders to one or more recipients through a channel
in order to deliver a file or stream. A sender is also sometimes
referred to as the encoder. If one sender is connected to any
number of recipients by a perfect channel, the received data
can be an exact copy of the input file or stream, as all the data
will be received correctly. Here, we assume that the channel is
not perfect, which is the case for most real-world channels. Of
the many channel imperfections, two imperfections of inter-
est are data erasure and data incompleteness (which can be
treated as a special case of data erasure). Data erasure occurs
when the channel loses or drops data. Data incompleteness
occurs when a recipient does not start receiving data until
some of the data has already passed it by, the recipient stops
receiving data before transmission ends, the recipient chooses
to only receive a portion of the transmitted data, and/or the
recipient intermittently stops and starts again receiving data.
As an example of data incompleteness, a moving satellite
sender might be transmitting data representing an input file or
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stream and start the transmission before a recipient is in
range. Once the recipient is in range, data can be received
until the satellite moves out of range, at which point the
recipient can redirect its satellite dish (during which time it is
not receiving data) to start receiving the data about the same
input file or stream being transmitted by another satellite that
has moved into range. As should be apparent from reading
this description, data incompleteness is a special case of data
erasure, since the recipient can treat the data incompleteness
(and the recipient has the same problems) as if the recipient
was in range the entire time, but the channel lost all the data up
to the point where the recipient started receiving data. Also, as
is well known in communication systems design, detectable
errors can be considered equivalent to erasures by simply
dropping all data blocks or symbols that have detectable
errors.

In some communication systems, a recipient receives data
generated by multiple senders, or by one sender using mul-
tiple connections. For example, to speed up a download, a
recipient might simultaneously connect to more than one
sender to transmit data concerning the same file. As another
example, in a multicast transmission, multiple multicast data
streams might be transmitted to allow recipients to connect to
one or more of these streams to match the aggregate trans-
mission rate with the bandwidth of the channel connecting
them to the sender. In all such cases, a concern is to ensure that
all transmitted data is of independent use to a recipient, i.e.,
that the multiple source data is not redundant among the
streams, even when the transmission rates are vastly different
for the different streams, and when there are arbitrary patterns
of loss.

In general, a communication channel is that which con-
nects the sender and the recipient for data transmission. The
communication channel could be a real-time channel, where
the channel moves data from the sender to the recipient as the
channel gets the data, or the communication channel might be
a storage channel that stores some or all of the data in its
transit from the sender to the recipient. An example of the
latter is disk storage or other storage device. In that example,
a program or device that generates data can be thought of as
the sender, transmitting the data to a storage device. The
recipient is the program or device that reads the data from the
storage device. The mechanisms that the sender uses to get the
data onto the storage device, the storage device itself and the
mechanisms that the recipient uses to get the data from the
storage device collectively form the channel. If there is a
chance that those mechanisms or the storage device can lose
data, then that would be treated as data erasure in the com-
munication channel.

When the sender and recipient are separated by a commu-
nication channel in which symbols can be erased, it is pref-
erable not to transmit an exact copy of an input file or stream,
but instead to transmit data generated from the input file or
stream (which could include all or parts of the input file or
stream itself) that assists with recovery of erasures. An
encoder is a circuit, device, module or code segment that
handles that task. One way of viewing the operation of the
encoder is that the encoder generates output symbols from
input symbols, where a sequence of input symbol values
represent the input file or a block of the stream. Each input
symbol would thus have a position, in the input file or block
of the stream, and a value. A decoder is a circuit, device,
module or code segment that reconstructs the input symbols
from the output symbols received by the recipient. In multi-
stage coding, the encoder and the decoder are further divided
into sub-modules each performing a different task.
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In embodiments of multi-stage coding systems, the
encoder and the decoder can be further divided into sub-
modules, each performing a different task. For instance, in
some embodiments, the encoder comprises what is referred to
herein as a static encoder and a dynamic encoder. As used
herein, a “static encoder” is an encoder that generates a num-
ber of redundant symbols from a set of input symbols,
wherein the number of redundant symbols is determined prior
to encoding. Examples of static encoding codes include
Reed-Solomon codes, Tornado codes, Hamming codes, Low
Density Parity Check (LDPC) codes, etc. The term “static
decoder” is used herein to refer to a decoder that can decode
data that was encoded by a static encoder.

As used herein, a “dynamic encoder” is an encoder that
generates output symbols from a set of input symbols, where
the number of possible output symbols is orders of magnitude
larger than the number of input symbols, and where the num-
ber of output symbols to be generated need not be fixed. One
example of a dynamic encoder is a chain reaction encoder,
such as the encoders described in Luby I and Luby II. The
term “dynamic decoder” is used herein to refer to a decoder
that can decode data that was encoded by a dynamic encoder.

Embodiments of multi-stage coding need not be limited to
any particular type of input symbol. Typically, the values for
the input symbols are selected from an alphabet of 2* sym-
bols for some positive integer M. In such cases, an input
symbol can be represented by a sequence of M bits of data
from the input file or stream. The value of M is often deter-
mined based on, for example, the uses of the application, the
communication channel, and/or the size of the output sym-
bols. Additionally, the size of an output symbol is often deter-
mined based on the application, the channel, and/or the size of
the input symbols. In some cases, the coding process might be
simplified if the output symbol values and the input symbol
values were the same size (i.e., representable by the same
number of bits or selected from the same alphabet). If that is
the case, then the input symbol value size is limited when the
output symbol value size is limited. For example, it may be
desired to put output symbols in packets of limited size. If
some data about a key associated with the output symbols
were to be transmitted in order to recover the key at the
receiver, the output symbol would preferably be small enough
to accommodate, in one packet, the output symbol value and
the data about the key.

As an example, if an input file is a multiple megabyte file,
the input file might be broken into thousands, tens of thou-
sands, or hundreds of thousands of input symbols with each
input symbol encoding thousands, hundreds, or only few
bytes. As another example, for a packet-based Internet chan-
nel, a packet with a payload of size of 1024 bytes might be
appropriate (a byte is 8 bits). In this example, assuming each
packet contains one output symbol and 8 bytes of auxiliary
information, an output symbol size of 8128 bits ((1024-8)*8)
would be appropriate. Thus, the input symbol size could be
chosen as M=(1024-8)*8, or 8128 bits. As another example,
some satellite systems use the MPEG packet standard, where
the payload of each packet comprises 188 bytes. In that
example, assuming each packet contains one output symbol
and 4 bytes of auxiliary information, an output symbol size of
1472 bits ((188-4)*8), would be appropriate. Thus, the input
symbol size could be chosen as M=(188-4)*8, or 1472 bits.
In a general-purpose communication system using multi-
stage coding, the application-specific parameters, such as the
input symbol size (i.e., M, the number of bits encoded by an
input symbol), might be variables set by the application.

As another example, for a stream that is sent using variable
size source packets, the symbol size might be chosen to be
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rather small so that each source packet can be covered with an
integral number of input symbols that have aggregate size at
most slightly larger than the source packet.

Each output symbol has a value. In one preferred embodi-
ment, which we consider below, each output symbol also has
associated therewith an identifier called its “key.” Preferably,
the key of each output symbol can be easily determined by the
recipient to allow the recipient to distinguish one output sym-
bol from other output symbols. Preferably, the key of an
output symbol is distinct from the keys of all other output
symbols. There are various forms of keying discussed in
previous art. For example, Luby I describes various forms of
keying that can be employed in embodiments of the present
invention.

Multi-stage coding is particularly useful where there is an
expectation of data erasure or where the recipient does not
begin and end reception exactly when a transmission begins
and ends. The latter condition is referred to herein as “data
incompleteness.” Regarding erasure events, multi-stage cod-
ing shares many of the benefits of chain reaction coding
described in Luby I. In particular, multi-stage output symbols
are information additive, so any suitable number of packets
can be used to recover an input file or stream to a desired
degree of accuracy. These conditions do not adversely affect
the communication process when multi-stage coding is used,
because the output symbols generated with multi-stage cod-
ing are information additive. For example, if a hundred pack-
ets are lost due to a burst of noise causing data erasure, an
extra hundred packets can be picked up after the burst to
replace the loss of the erased packets. If thousands of packets
are lost because a receiver did not tune into a transmitter when
it began transmitting, the receiver could just pickup those
thousands of packets from any other period of transmission,
or even from another transmitter. With multi-stage coding, a
receiver is not constrained to pickup any particular set of
packets, so it can receive some packets from one transmitter,
switch to another transmitter, lose some packets, miss the
beginning or end of a given transmission and still recover an
input file or block of a stream. The ability to join and leave a
transmission without receiver-transmitter coordination helps
to simplify the communication process.

In some embodiments, transmitting a file or stream using
multi-stage coding can include generating, forming or
extracting input symbols from an input file or block of a
stream, computing redundant symbols, encoding input and
redundant symbols into one or more output symbols, where
each output symbol is generated based on its key indepen-
dently of all other output symbols, and transmitting the output
symbols to one or more recipients over a channel. Addition-
ally, in some embodiments, receiving (and reconstructing) a
copy of the input file or block of a stream using multi-stage
coding can include receiving some set or subset of output
symbols from one of more data streams, and decoding the
input symbols from the values and keys of the received output
symbols.

Suitable FEC erasure codes as described herein can be used
to overcome the above-cited difficulties and would find use in
a number of fields including multimedia broadcasting and
multicasting systems and services. An FEC erasure code
hereafter referred to as “a multi-stage chain reaction code”
has properties that meet many of the current and future
requirements of such systems and services.

Some basic properties of multi-stage chain reaction codes
are that, for any packet loss conditions and for delivery of
source files of any relevant size or streams of any relevant
rate: (a) reception overhead of each individual receiver device
(“RD”) is minimized; (b) the total transmission time needed
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to deliver source files to any number of RDs can be minimized
(c) the quality of the delivered stream to any number of RDs
can be maximized for the number of output symbols sent
relative to the number of input symbols, with suitable selec-
tion of transmission schedules. The RDs might be handheld
devices, embedded into a vehicle, portable (i.e., movable but
not typically in motion when in use) or fixed to a location.

The amount of working memory needed for decoding is
low and can still provide the above properties, and the amount
of computation needed to encode and decode is minimal. In
this document, we provide a simple and easy to implement
description of some variations of multi-stage chain reaction
codes.

Multi-stage chain reaction codes are fountain codes, i.e., as
many encoding packets as needed can be generated on-the-
fly, each containing unique encoding symbols that are equally
useful for recovering a source file or block of a stream. There
are many advantages to using fountain codes versus other
types of FEC codes. One advantage is that, regardless of
packet loss conditions and RD availability, fountain codes
minimize the number of encoding packets each RD needs to
receive to reconstruct a source file or block of a stream. This
is true even under harsh packet loss conditions and when, for
example, mobile RDs are only intermittently turned-on or
available over a long file download session.

Another advantage is the ability to generate exactly as
many encoding packets as needed, making the decision on
how many encoding packets to generate on-the-fly while the
transmission is in progress. This can be useful if for example
there is feedback from RDs indicating whether or not they
received enough encoding packets to recover a source file or
block of a stream. When packet loss conditions are less severe
than expected the transmission can be terminated early. When
packet loss conditions are more severe than expected or RDs
are unavailable more often than expected the transmission
can be seamlessly extended.

Another advantage is the ability to inverse multiplex.
Inverse multiplexing is when a RD is able to combine
received encoding packets generated at independent senders
to reconstruct a source file or block of a stream. One practical
use of inverse multiplexing is described in below in reference
to receiving encoding packets from different senders.

Where future packet loss, RD availability and application
conditions are hard to predict, it is important to choose an
FEC solution that is as flexible as possible to work well under
unpredictable conditions. multi-stage chain reaction codes
provide a degree of flexibility unmatched by other types of
FEC codes.

Aspects of the invention will now be described with refer-
ence to the figures.

System Overview

FIG.1is ablock diagram of a communications system 100
that uses multi-stage coding. In communications system 100,
an input file 101, or an input stream 105, is provided to an
input symbol generator 110. Input symbol generator 110
generates a sequence of one or more input symbols (IS(0),
1S(1),1S(2), . . . ) from the input file or stream, with each input
symbol having a value and a position (denoted in FIG.1as a
parenthesized integer). As explained above, the possible val-
ues for input symbols, i.e., its alphabet, is typically an alpha-
bet of 2™ symbols, so that each input symbol codes for M bits
of'the input file or stream. The value of M is generally deter-
mined by the use of communication system 100, but a general
purpose system might include a symbol size input for input
symbol generator 110 so that M can be varied from use to use.
The output of input symbol generator 110 is provided to an
encoder 115.
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Static key generator 130 produces a stream of static keys
Sq: S;, . . . . The number of the static keys generated is
generally limited and depends on the specific embodiment of
encoder 115. The generation of static keys will be subse-
quently described in more detail. Dynamic key generator 120
generates a dynamic key for each output symbol to be gener-
ated by the encoder 115. Each dynamic key is generated so
that a large fraction of the dynamic keys for the same input file
orblock of a stream are unique. For example, Luby I describes
embodiments of key generators that can be used. The outputs
of'dynamic key generator 120 and the static key generator 130
are provided to encoder 115.

From each key I provided by dynamic key generator 120,
encoder 115 generates an output symbol, with a value B(I),
from the input symbols provided by the input symbol genera-
tor. The operation of encoder 115 will be described in more
detail below. The value of each output symbol is generated
based on its key, on some function of one or more of the input
symbols, and possibly on or more redundant symbols thathad
been computed from the input symbols. The collection of
input symbols and redundant symbols that give rise to a
specific output symbol is referred to herein as the output
symbol’s “associated symbols™ or just its “associates”. The
selection of the function (the “value function™) and the asso-
ciates is done according to a process described in more detail
below. Typically, but not always, M is the same for input
symbols and output symbols, i.e., they both code for the same
number of bits.

In some embodiments, the number K of input symbols is
used by the encoder 115 to select the associates. If K is not
known in advance, such as where the input is a streaming file,
K can be just an estimate. The value K might also be used by
encoder 115 to allocate storage for input symbols and any
intermediate symbols generated by encoder 115.

Encoder 115 provides output symbols to a transmit module
140. Transmit module 140 is also provided the key of each
such output symbol from the dynamic key generator 120.
Transmit module 140 transmits the output symbols, and
depending on the keying method used, transmit module 140
might also transmit some data about the keys of the transmit-
ted output symbols, over a channel 145 to a receive module
150. Channel 145 is assumed to be an erasure channel, but
that is not a requirement for proper operation of communica-
tion system 100. Modules 140, 145 and 150 can be any
suitable hardware components, software components, physi-
cal media, or any combination thereof, so long as transmit
module 140 is adapted to transmit output symbols and any
needed data about their keys to channel 145 and receive
module 150 is adapted to receive symbols and potentially
some data about their keys from channel 145. The value of K,
if used to determine the associates, can be sent over channel
145, or it may be set ahead of time by agreement of encoder
115 and decoder 155.

As explained above, channel 145 can be a real-time chan-
nel, such as a path through the Internet or a broadcast link
from a television transmitter to a television recipient or a
telephone connection from one point to another, or channel
145 can be a storage channel, such as a CD-ROM, disk drive,
Web site, or the like. Channel 145 might even be a combina-
tion of a real-time channel and a storage channel, such as a
channel formed when one person transmits an input file from
a personal computer to an Internet Service Provider (ISP)
over a telephone line, the input file is stored on a Web server
and is subsequently transmitted to a recipient over the Inter-
net.

Because channel 145 is assumed to be an erasure channel,
communications system 100 does not assume a one-to-one
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correspondence between the output symbols that exit receive
module 150 and the output symbols that go into transmit
module 140. In fact, where channel 145 comprises a packet
network, communications system 100 might not even be able
to assume that the relative order of any two or more packets is
preserved in transit through channel 145. Therefore, the key
of'the output symbols is determined using one or more of the
keying schemes described above, and not necessarily deter-
mined by the order in which the output symbols exit receive
module 150.

Receive module 150 provides the output symbols to a
decoder 155, and any data receive module 150 receives about
the keys of these output symbols is provided to a dynamic key
regenerator 160. Dynamic key regenerator 160 regenerates
the dynamic keys for the received output symbols and pro-
vides these dynamic keys to decoder 155. Static key generator
163 regenerates the static keys S, S,, . . . and provides them
to decoder 155. The static key generator has access to random
number generator 135 used both during the encoding and the
decoding process. This can be in the form of access to the
same physical device if the random numbers are generated on
such device, or in the form of access to the same algorithm for
the generation of random numbers to achieve identical behav-
ior. Decoder 155 uses the keys provided by dynamic key
regenerator 160 and static key generator 163 together with the
corresponding output symbols, to recover the input symbols
(again 1S(0), IS(1), IS(2), . . . ). Decoder 155 provides the
recovered input symbols to an input file reassembler 165,
which generates a copy 170 of input file 101 or input stream
105.

An Encoder

FIG. 2 is a block diagram of one specific embodiment of
encoder 115 shown in FIG. 1. Encoder 115 comprises a static
encoder 210, a dynamic encoder 220, and a redundancy cal-
culator 230. Static encoder 210 receives the following inputs:
a) original input symbols IS(0), IS(1), . . ., IS(K-1) provided
by the input symbol generator 110 and stored in an input
symbol buffer 205; b) the number K of original input sym-
bols; c) static keys S, S;, . . . provided by the static key
generator 130; and d) a number R of redundant symbols.
Upon receiving these inputs static encoder 205 computes R
redundant symbols RE(0), RE(1), . . ., RE(R-1) as will be
described below. Typically, but not always, the redundant
symbols have the same size as the input symbols. In one
specific embodiment, the redundant symbols generated by
static encoder 210 are stored in input symbol buffer 205. Input
symbol buffer 205 may be only logical, i.e., the file or block
of the stream may be physically stored in one place and the
positions of the input symbols within symbol buffer 205
could only be renamings of the positions of these symbols
within the original file or block of the stream.

Dynamic encoder receives the input symbols and the
redundant symbols, and generates output symbols as will be
described in further detail below. In one embodiment in which
the redundant symbols are stored in the input symbol buffer
205, dynamic encoder 220 receives the input symbols and
redundant symbols from input symbol buffer 205.

Redundancy calculator 230 computes the number R of
redundant symbols from the number K of input symbols. This
computation is described in further detail below.

Overview of Static Encoder

The general operation of static encoder 210 is shown with
reference to FIGS. 3 and 4. FIG. 3 is a simplified flow diagram
illustrating one embodiment of a method of statically encod-
ing. In a step 305, a variable j, which keeps track of how many
redundant symbols have been generated, is set to zero. Then,
in a step 310, a first redundant symbol RE(0) is computed as
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a function F, of at least some of the input symbols
1S(0), . . ., IS(K-1). Then, in a step 315, the variable j is

incremented. Next, in a step 320, it is tested whether all of the
redundant symbols have been generated (i.e., is j greater than
R-1?). If yes, then the flow ends. Otherwise, the flow pro-
ceedsto step 325. In step 325, RE(j) is computed as a function
F, of the input symbols IS(0), . . ., IS(K-1) and of the
previously generated redundant symbols RE(0), ..., RE(j-1),
where need not be a function that depends on every one of the
input symbols or every one of the redundant symbols. Steps
315, 320, and 325 are repeated until R redundant symbols
have been computed.

Referring again to FIGS. 1 and 2, in some embodiments,
static encoder 210 receives one or more static keys S,
S,, . .. from static key generator 130. In these embodiments,
the static encoder 210 uses the static keys to determine some
or all of functions Fy, F,, . .. F, ;. For example, static key S,
can beused to determine function F, statickey S, canbe used
to determine function F |, etc. Or, one or more of static keys
So, Sy, . . . can be used to determine function F,, one or more
of statickeys S, S,, . .. can be used to determine function F,,
etc. In other embodiments, no static keys are needed, and thus
static key generator 130 is not needed.

Referring now to FIGS. 2 and 3, in some embodiments, the
redundant symbols generated by static encoder 210 can be
stored in input symbol buffer 205. FIG. 4 is a simplified
illustration of the operation of one embodiment of static
encoder 210. Particularly, static encoder 210 generates redun-
dant symbol RE(j) as a function Fj of input symbols
18(0), ..., IS(K-1), RE(0), . .., RE(j-1), received from input
symbol butfer 205, and stores it back into input symbol buffer
205. The exact form of the functions F,, F,, .. ., F,_, depends
on the particular application. Typically, but not always, func-
tions Fy, F,, ..., Fx | include an exclusive OR of some or all
of their corresponding arguments. As described above, these
functions may or may not actually employ static keys gener-
ated by static key generator 130 of FIG. 1. For example, in one
specific embodiment described below, the first few functions
implement a Hamming code and do not make any use of the
static keys S, S, . . ., whereas the remaining functions
implement a Low-Density Parity-Check code and make
explicit use of the static keys.

Overview of Multi-Stage Encoder

Referring again to FIG. 2, dynamic encoder 220 receives
input symbols IS(0), . . ., IS(K-1) and the redundant symbols
RE(0), . ..,RE(R-1) and a key I for each output symbol it is
to generate. The collection comprising the original input sym-
bols and the redundant symbols will be referred to as the
collection of “dynamic input symbols™ hereafter. FIG. 5 is a
simplified block diagram of one embodiment of a dynamic
encoder, including a weight selector 510, an associator 515, a
value function selector 520 and a calculator 525. As shown in
FIG. 5, the K+R dynamic input symbols are stored in a
dynamic symbol bufter 505. In effect, dynamic encoder 500
performs the action illustrated in FIG. 6, namely, to generate
an output symbol value B(I) as some value function of
selected input symbols.

FIG. 7 is a simplified block diagram of one specific
embodiment of a static encoder according to the present
invention. Static encoder 600 comprises a parameter calcula-
tor 605, a Hamming encoder 610, and a low-density-parity-
check (LDPC) encoder 620. Hamming encoder 610 is
coupled to receive the input symbols IS(0), . .., IS(K-1) from
an input symbol buffer 625, the number K of input symbols,
and the parameter D. In response, Hamming encoder 610
generates D+1 redundant symbols HA(0), HA(1), ..., HA(D)
according to a Hamming code.
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FIG. 8 illustrates the operation of one embodiment of the
present invention that employs the static encoder shown in
FIG. 7.

FIG. 9is asimplified flow diagram illustrating one embodi-
ment of a parameter calculator, such as parameter calculator
605 of FIG. 7, that calculates parameter D and E as described
above. First, in a step 705, parameter D is initialized to one.
Then, in step 710, it is determined whether 2°-D-1 is less
than K. If no, then the flow proceeds to step 730. If yes, the
flow proceeds to step 720, where the parameter D is incre-
mented. Then, the flow proceeds back to step 710. Once D has
been determined, then, in step 730, the parameter E is calcu-
lated as R-D-1.

FIG. 10 is a simplified flow diagram of such an encoder
according to one embodiment of the present invention, which
will now be described. First, in step 805, a variable i is
initialized to zero. Variable i keeps track of the number of
redundant symbols already generated. In step 810, a number
tis calculated as the smallest odd integer greater than or equal
to K/2. In step 815, values P,, P,, . . ., P, are generated based
onK, t, and a static key S,. The values P,, P,, . . ., P, indicate
the positions of input symbols that will be used to generate a
redundant symbol. In one particular embodiment, an associa-
tor such as associator 515 of FIG. 5 is used to generate P,
P,, ..., P, Inparticular, the value t can be provided as the W(I)
input, the value K can be provided as the K+R input, and the
static key S, can be provided as the key I input. It should be
noted that many different values oft would yield similar cod-
ing effects, and thus this particular choice is only an example.
In step 820, the value of RE(i) is computed as the XOR ofthe
values IS(P,), IS(P,), . . ., IS(P,). In step 825, the variableiis
incremented by one to prepare computation of the next redun-
dant symbol, and in step 830, it is determined whether all the
redundant symbols have been computed. If not, then the flow
returns to step 815.

FIG. 11 is a simplified block diagram illustrating one
embodiment of a decoder according to the present invention.
Decoder 900 can be used, for example, to implement decoder
155 of FIG. 1.

Decoder 900 comprises a dynamic decoder 905 and a static
decoder 910. Input symbols and redundant symbols recov-
ered by dynamic decoder 905 are stored in a reconstruction
buffer 915. Upon completion of dynamic decoding, static
decoder 910 attempts to recover any input symbols not recov-
ered by dynamic decoder 905, if any. In particular, static
decoder 910 receives input symbols and redundant symbols
from reconstruction buffer 915.

FIG. 12 is a simplified flow diagram illustrating one
embodiment of a method for decoding according to the
present invention. In step 1005, Q output symbols are
received by the decoder. The value of Q can depend on the
number of input symbols and the specific dynamic encoder
used. The value of Q can also depend on the desired degree of
accuracy to which the decoder can recover the input symbols.
For example, ifitis desired that the decoder can recover all of
the input symbols with a high probability, then Q should be
chosen to be larger than the number of input symbols. Par-
ticularly, in some applications, when the number of input
symbols is large, Q can be less than 3% larger than the number
of original input symbols. In other applications, when the
number of input symbols is small, Q can be at least 10% larger
than the number of input symbols. Specifically, Q can be
chosen as the number K of input symbols plus a number A,
where A is chosen to ensure that the decoder can regenerate
all of the input symbols with a high probability. Determina-
tion of the number A is described in more detail below. Ifit is
acceptable for the decoder to be unable to decode all of the
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input symbols (either sometimes or always), then Q can be
less than K+A, equal to K, or even less than K. Clearly, one
aim of an overall coding system will often be to decrease the
number Q as much as possible, while maintaining good
probabilistic guarantees on the success of the decoding pro-
cess with respect to the desired degree of accuracy.

In step 1010, dynamic decoder 905 regenerates input sym-
bols and redundant symbols from the Q received output sym-
bols. It is to be understood, that steps 1005 and 1010 can be
performed substantially concurrently. For example, dynamic
decoder 905 can begin regenerating input symbols and redun-
dant symbols prior to the decoder receiving Q output sym-
bols.

After dynamic decoder 905 has processed Q output sym-
bols, then it is determined whether the input symbols have
been recovered to a desired degree of accuracy. The desired
degree of accuracy may be, for example, all of the input
symbols, or some number, percentage, etc., less than all of the
input symbols. If yes, then the flow ends. If no, then the flow
proceeds to step 1020. In step 1020, static decoder 910
attempts to recover any input symbols that dynamic decoder
905 was unable to recover. After static encoder 910 has pro-
cessed the input symbols and redundant symbols recovered
by dynamic encoder 905, then the flow ends.

FIG. 13 is a simplified flow diagram illustrating another
embodiment of a method for decoding according to the
present invention. This embodiment is similar to that
described with respect to FIG. 11, and includes steps 1005,
1010, 1015, and 1025 in common. But, after step 1025, the
flow proceeds to step 1030, in which it is determined whether
the input symbols have been recovered to a desired degree of
accuracy. If yes, then the flow ends. If no, then the flow
proceeds to step 1035. In step 1035, one or more additional
output symbols are received. Then, the flow proceeds back to
step 1010, so that dynamic decoder 905 and/or static decoder
910 can attempt to recover the remaining unrecovered input
symbols.

FIG. 14 is a simplified flow diagram illustrating yet another
embodiment of a method for decoding according to the
present invention. In step 1055, output symbols are received
by the decoder, and in step 1060, dynamic decoder 905 regen-
erates input symbols and redundant symbols from the
received output symbols. Then, in step 1065, it is determined
whether dynamic decoding should be ended. This determina-
tion can be based on one or more of the number of output
symbols processed, the number of input symbols recovered,
the current rate at which additional input symbols are being
recovered, the time spent processing output symbols, etc.

In step 1065, if it is determined that dynamic decoding is
not to be stopped, then the flow proceeds back to step 1055.
But, ifinstep 1065, it is determined to end dynamic decoding,
then the flow proceeds to step 1070. In step 1070, it is deter-
mined whether the input symbols have been recovered to a
desired degree of accuracy. If yes, then the flow ends. If no,
then the flow proceeds to step 1075. In step 1075, static
decoder 910 attempts to recover any input symbols that
dynamic decoder 905 was unable to recover. After static
encoder 910 has processed the input symbols and redundant
symbols recovered by dynamic encoder 905, the flow ends.

FIG. 15 shows one embodiment of dynamic decoder
according to the present invention. Dynamic decoder 1100
includes similar components as those of dynamic encoder
500 shownin FIG. 5. Decoder 1100 is similar to embodiments
of chain reaction decoders described in Luby I and Luby II.
Dynamic decoder 1100 comprises a weight selector 510, an
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associator 515, a value function selector 520, an output sym-
bol buffer 1105, a reducer 1115, a reconstructor 1120 and a
reconstruction buffer 1125.

FIG. 16 is a simplified block diagram illustrating one
embodiment of a static decoder. This embodiment can be
used when the data is encoded with a static encoder such as
described with reference to FIG. 7. Static decoder 1200 com-
prises a LDPC decoder 1205 and a Hamming decoder 1210.
The LDPC decoder 1205 receives input symbols and redun-
dant symbols from a reconstruction buffer 1215, and attempts
to reconstruct those symbols of reconstruction buffer 1215
unrecovered after the decoding step of the dynamic decoder.
In some embodiments, reconstruction buffer 1215 is recon-
struction buffer 1125 (FIG. 15).

Many variations of LDPC decoders and Hamming decod-
ers are well known to those skilled in the art, and can be
employed in various embodiments according to the present
invention. In one specific embodiment, Hamming decoder is
implemented using a Gaussian elimination algorithm. Many
variations of Gaussian elimination algorithms are well known
to those skilled in the art, and can be employed in various
embodiments according to the present invention.

Variations

Multi-stage chain reaction codes as described above are not
systematic codes, i.e., all of the original source symbols of a
source block are not necessarily among the encoding symbols
that are sent. However, systematic FEC codes are useful for a
file download system or service, and very important for a
streaming system or service. As shown in the implementation
below, a modified code can be made to be systematic and still
maintain the fountain code and other described properties.

One reason why it is easy to architect a variety of supple-
mental services using multi-stage codes is that it can combine
received encoding symbols from multiple senders to recon-
struct a source file or stream without coordination among the
senders. The only requirement is that the senders use differing
sets of keys to generate the encoding symbols that they send
in encoding packets to the code. Ways to achieve this include
designating different ranges of the key space to be used by
each such sender, or generating keys randomly at each sender.

As an example of the use of this capability, consider pro-
viding a supplemental service to a file download service that
allows multi-stage chain reaction codes that did not receive
enough encoding packets to reconstruct a source file from the
file download session to request additional encoding packets
to be sent from a make-up sender, e.g., via a HTTP session.
The make-up sender generates encoding symbols from the
source file and sends them, for example using HTTP, and all
these encoding symbols can be combined with those received
from the file download session to recover the source file.
Using this approach allows different senders to provide incre-
mental source file delivery services without coordination
between the senders, and ensuring that each individual
receiver need receive only a minimal number of encoding
packets to recover each source file.

Implementations of Various Stages of Multi-Stage Codes

FEC Scheme Definition

A packet using these techniques might be represented with
header information such as an FEC Payload ID of four octets
comprising a Source Block Number (SBN) (16 bit integer
identifier for the source block that the encoding symbols
within the packet relate to) and an Encoding Symbol ID (ESI)
(16 bit integer identifier for the encoding symbols within the
packet). One suitable interpretation of the Source Block
Number and Encoding Symbol Identifier is defined in Sec-
tions B below. FEC Object Transmission information might
comprise the FEC Encoding ID, a Transfer Length (F) and the
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parameters T, Z, N and A defined in below. The parameters T
and Z are 16 bit unsigned integers, N and A are 8 bit unsigned
integers.

An FEC encoding scheme for MBMS forward error cor-
rection is defined in the sections below. It defines two differ-
ent FEC Payload ID formats, one for FEC source packets and
another for FEC repair packets, but variations for nonsystem-
atic codes are also possible.

The Source FEC payload ID might comprise a Source
Block Number (SBN) (16 bit integer identifier for the source
block that the encoding symbols within the packet relate to)
and an Encoding Symbol ID (ESI) (16 bit integer identifier for
the encoding symbols within the packet), while the Repair
FEC Payload ID might comprise a Source Block Number
(SBN) (16 bit integer identifier for the source block that the
repair symbols within the packet relate to), an Encoding Sym-
bol ID (ESI) (16 bit integer identifier for the repair symbols
within the packet), and a Source Block Length (SBL) (16 bits,
representing the number of source symbols in the source
block. The interpretation of the Source Block Number,
Encoding Symbol Identifier and Source Block Length is
defined below.

FEC Object Transmission information might comprise the
FEC Encoding ID, the maximum source block length, in
symbols, and the symbol size, in bytes. The symbol size and
maximum source block length might comprise a four octet
field of Symbol Size (T) (16 bits representing the size of an
encoding symbol, in bytes), and a Maximum Source Block
Length (16 bits representing the maximum length of a source
block, in symbols).

The sections below specify the systematic MSCR forward
error correction code and its application to MBMS and other
uses. MSCR is a fountain code, i.e., as many encoding sym-
bols as needed can be generated by the encoder on-the-fly
from the source symbols of a block. The decoder is able to
recover the source block from any set of encoding symbols
only slightly more in number than the number of source
symbols. The code described in this document is a systematic
code, that is, the original source symbols are sent unmodified
from sender to receiver, as well as a number of repair symbols.
B.1 Definitions, Symbols and Abbreviations

B.1.1 Definitions

For the purposes of this description, the following terms
and definitions apply.

Source block: a block of K source symbols which are consid-
ered together for MSCR encoding purposes.

10

15

20

25

30

35

40

45

18

Source symbol: the smallest unit of data used during the
encoding process. All source symbols within a source block
have the same size.

Encoding symbol: a symbol that is included in a data packet.
The encoding symbols comprise the source symbols and the
repair symbols. Repair symbols generated from a source
block have the same size as the source symbols of that source
block.

Systematic code: a code in which the source symbols are
included as part of the encoding symbols sent for a source
block.

Repair symbol: the encoding symbols sent for a source block
that are not the source symbols. The repair symbols are gen-
erated based on the source symbols.

Intermediate symbols: symbols generated from the source
symbols using an inverse encoding process. The repair sym-
bols are then generated directly from the intermediate sym-
bols. The encoding symbols do not include the intermediate
symbols, i.e., intermediate symbols are not included in data
packets.

Symbol: a unit of data. The size, in bytes, of a symbol is
known as the symbol size.

Encoding symbol group: a group of encoding symbols that
are sent together, i.e., within the same packet whose relation-
ship to the source symbols can be derived from a single
Encoding Symbol ID.

Encoding Symbol ID: information that defines the relation-
ship between the symbols of an encoding symbol group and
the source symbols.

Encoding packet: data packets that contain encoding symbols

Sub-block: a source block is sometime broken into sub-
blocks, each of which is sufficiently small to be decoded in
working memory. For a source block comprising K source
symbols, each sub-block comprises K sub-symbols, each
symbol of the source block being composed of one sub-
symbol from each sub-block.

Sub-symbol: part of a symbol. Each source symbol is com-
posed of as many sub-symbols as there are sub-blocks in the
source block.

Source packet: data packets that contain source symbols.
Repair packet: data packets that contain repair symbols.
B.1.2. Symbols

i,j,x b,a,b,d,v,m

represent positive integers

ceil(x) denotes the smallest positive integer which is greater than or equal to x

choose(i, j) denotes the number of ways j objects can be chosen from among i objects
without repetition

floor(x) denotes the largest positive integer which is less than or equal to x

1% denotes i modulo j

X'y denotes, for equal-length bit strings X and Y, the bitwise exclusive-or of X and Y

A denote a symbol alignment parameter. Symbol and sub-symbol sizes are
restricted to be multiples of A.

AT denotes the transposed matrix of matrix A

Al denotes the inverse matrix of matrix A

K denotes the number of symbols in a single source block

Karax denotes the maximum number of source symbols that can be in a single source
block. Set to 8192.

L denotes the number of pre-coding symbols for a single source block

S denotes the number of LDPC symbols for a single source block

H denotes the number of Half symbols for a single source block

C denotes an array of intermediate symbols, C[0], C[1], C[2],...,C[L - 1]

C denotes an array of source symbols, C'[0], C'[1], C'[2],...,C'[K-1]

X a non-negative integer value

Vo, Vi two arrays of 4-byte integers, Vo[0], Vo[1], . . ., Vo[255] and V[0], V[1], .. .,

V,[255]

Rand[X, i, m]

a pseudo-random number generator
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-continued

Deg[v] a degree generator

LTEnc[K, C, (d, a, a LT encoding symbol generator

b)]

Trip[K, X] a triple generator function

G the number of symbols within an encoding symbol group

N the number of sub-blocks within a source block

T the symbol size in bytes. If the source block is partitioned into sub-blocks,
then T=T"-N.

T the sub-symbol size, in bytes. If the source block is not partitioned into sub-
blocks then T' is not relevant.

F the file size, for file download, in bytes

I the sub-block size in bytes

P for file download, the payload size of each packet, in bytes, that is used in the
recommended derivation of the file download transport parameters. For
streaming, the payload size of each repair packet, in bytes, that is used in the
recommended derivation of the streaming transport parameters.

Q Q= 65521, i.e., Q is the largest prime smaller than 2'¢

Z the number of source blocks, for file download

I(K) the systematic index associated with K

G denotes any generator matrix

Is denotes the SxS identity matrix

Osoir denotes the SxH zero matrix

B.1.3 Abbreviations
For the purposes of the present document, the following
abbreviations apply:

ESI Encoding Symbol ID

LDPC Low Density Parity Check

LT Luby Transform

SBN Source Block Number

SBL Source Block Length (in units of symbols)

B.2. Overview

The MSCR forward error correction code can be applied to
both MBMS file delivery and MBMS streaming applications.
MSCR code aspects which are specific to each of these appli-
cations are discussed in Sections B.3 and B.4 of this docu-
ment.

A component of the systematic MSCR code is the basic
encoder described in Section B.5. First, itis described how to
derive values for a set of intermediate symbols from the
original source symbols such that knowledge of the interme-
diate symbols is sufficient to reconstruct the source symbols.
Secondly, the encoder produces repair symbols which are
each the exclusive OR of a number of the intermediate sym-
bols. The encoding symbols are the combination of the source
and repair symbols. The repair symbols are produced in such
a way that the intermediate symbols and therefore also the
source symbols can be recovered from any sufficiently large
set of encoding symbols.

This document defines the systematic MSCR code
encoder. A number of possible decoding algorithms are pos-
sible. An efficient decoding algorithm is provided in Section
B.6.

The construction of the intermediate and repair symbols is
based in part on a pseudo-random number generator
described in Section B.5. This generator is based on a fixed set
of 512 random numbers that are available to both sender and
receiver. An example set of numbers are those provided in
Appendix B.1.

Finally, the construction of the intermediate symbols from
the source symbols is governed by a ““systematic index”. An
example set of values for the systematic index is shown in
Appendix A for source block sizes from 4 source symbols to
K,.4x=8192 source symbols.
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B.3. File Download

B.3.1. Source Block Construction

B.3.1.1. General

In order to apply the MSCR encoder to a source file, the file
may be broken into Z=1 blocks, known as source blocks. The
MSCR encoder is applied independently to each source
block. Each source block is identified by a unique integer
Source Block Number (SBN), where the first source block
has SBN zero, the second has SBN one, etc. Each source
block is divided into a number, K, of source symbols of size
T bytes each. Each source symbol is identified by a unique
integer Encoding Symbol Identifier (ESI), where the first
source symbol of a source block has ESI zero, the second has
ESI one, etc.

Each source block with K source symbols is divided into
N=z1 sub-blocks, which are small enough to be decoded in the
working memory. Each sub-block is divided into K sub-
symbols of size T".

Note that the value of K is not necessarily the same for each
source block of a file and the value of T' may not necessarily
be the same for each sub-block of a source block. However,
the symbol size T is the same for all source blocks of a file and
the number of symbols, K is the same for every sub-block of
a source block. Exact partitioning of the file into source
blocks and sub-blocks is described in B.3.1.2 below.

FIG. 17 shows an example source block placed into a two
dimensional array, where each entry is a T'-byte sub-symbol,
each row is a sub-block and each column is a source symbol.
In this example, the value of T' is the same for every sub-
block. The number shown in each sub-symbol entry indicates
their original order within the source block. For example, the
sub-symbol numbered K contains bytes T'. K through T'-(K+
1)-1 of the source block. Then, source symbol i is the con-
catenation of the ith sub-symbol from each of the sub-blocks,
which corresponds to the sub-symbols of the source block
numbered i, K+i, 2:K+i, . . ., (N=1)K+.

B.3.1.2 Source Block and Sub-Block Partitioning

The construction of source blocks and sub-blocks is deter-
mined based on five input parameters, F, A, T, Z and N and a
function Partition] |. The five input parameters are defined as
follows:

F the size of the file, in bytes

A a symbol alignment parameter, in bytes

T the symbol size, in bytes, which must be a multiple of A
Z the number of source blocks

N the number of sub-blocks in each source block
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These parameters might be set so that ceil(ceil(F/T)/Z)
=K, ;v Recommendations for derivation of these parameters
are provided in Section B.3.4.

The function Partition[ | takes a pair of integers (I, J) as
input and derives four integers (I, I, J;, J5) as output. Spe-
cifically, the value of Partition[I, J] is a sequence of four
integers (1, I, J;, I5), where I,=ceil(I/]), Is~tloor(I/J), I, =I-
14T and J=J-J;. Partition[ ] derives parameters for partition-
ing a block of size I into J approximately equal sized blocks.
Specifically, J, blocks of length I, and J blocks of length 1.

The source file might be partitioned into source blocks and
sub-blocks as follows:

Let,
K,=ceil(F/T)
K. Ky, Z;, Zs)=Partition[K,, Z]

(T, Ts, Ny, Ng)=Partition[T/A, N]

Then, the file might be partitioned into Z=7, +Z  contigu-
ous source blocks, the first Z, source blocks each having
length K, T bytes and the remaining Z source blocks each
having KT bytes.

If K, T>F then for encoding purposes, the last symbol
might be padded at the end with K, T-F zero bytes.

Next, each source block might be divided into N=N,+Ng
contiguous sub-blocks, the first N; sub-blocks each compris-
ing K contiguous sub-symbols of size of T, - A and the remain-
ing N sub-blocks each comprising K contiguous sub-sym-
bols of size of Ty A. The symbol alignment parameter A
ensures that sub-symbols are always a multiple of A bytes.

Finally, the mth symbol of a source block comprises the
concatenation of the mth sub-symbol from each of the N
sub-blocks.

B.3.2. Encoding Packet Construction

B.3.2.1. General

Each encoding packet contains the following information:
Source Block Number (SBN)

Encoding Symbol ID (ESI)
encoding symbol(s)

Each source block is encoded independently of the others.
Source blocks are numbered consecutively from zero.

Encoding Symbol ID values from 0 to K-1 identify the
source symbols. Encoding Symbol IDs from K onwards iden-
tify repair symbols.

B.3.2.2 Encoding Packet Construction

Each encoding packet preferably either consists entirely of
source symbols (source packet) or entirely of repair symbols
(repair packet). A packet may contain any number of symbols
from the same source block. In the case that the last symbol in
the packet includes padding bytes added for FEC encoding
purposes then these bytes need not be included in the packet.
Otherwise, only whole symbols might be included.

The Encoding Symbol ID, X, carried in each source packet
is the Encoding Symbol ID of the first source symbol carried
in that packet. The subsequent source symbols in the packet
have Encoding Symbol IDs, X+1 to X+G-1, in sequential
order, where G is the number of symbols in the packet.

Similarly, the Encoding Symbol ID, X, placed into a repair
packet is the Encoding Symbol ID of the first repair symbol in
the repair packet and the subsequent repair symbols in the
packet have Encoding Symbol IDs X+1 to X+G-1 in sequen-
tial order, where G is the number of symbols in the packet.

Note that it is not necessary for the receiver to know the
total number of repair packets. The G repair symbol triples
(d[0], a[0], b[O]), . . ., (d[G-1], a[G-1], b| G-1]) for the repair
symbols placed into a repair packet with ESI X are computed
using the Triple generator defined in B.5.3.4 as follows:
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For eachi=0, ..., G-1
(d[il, a[i], b[iD)=Trip[K,X+i]

The G repair symbols to be placed in repair packet with ESI
X are calculated based on the repair symbol triples as
described in Section B.5.3 using the intermediate symbols C
and the LT encoder LTenc[K, C, (d[i], a[i], b[i])]-

B.3.3. Transport

This section describes the information exchange between
the MSCR encoder/decoder and any transport protocol mak-
ing use of MSCR forward error correction for file delivery.

The MSCR encoder and decoder for file delivery require
the following information from the transport protocol: the file
size, F, in bytes, the symbol alignment parameter, A, the
symbol size, T, in bytes, which is a multiple of A, the number
of source blocks, Z, the number of sub-blocks in each source
block, N. The MSCR encoder for file delivery additionally
requires the file to be encoded, F bytes.

The MSCR encoder supplies the transport protocol with
encoding packet information comprising, for each packet, the
SBN, the ESI and the encoding symbol(s). The transport
protocol might communicate this information transparently
to the MSCR decoder.

B.3.4. Recommended Parameters (Informative)

B.3.4.1 Parameter Derivation Algorithm

This section provides recommendations for the derivation
of the four transport parameters, A, T, Z and N. This recom-
mendation is based on the following input parameters:

F the file size, in bytes

W a target on the sub-block size, in bytes

P the maximum packet payload size, in bytes, which is
assumed to be a multiple of A

A the symbol alignment factor, in bytes

K, . the maximum number of source symbols per source
block.

K, zya minimum target on the number of symbols per source
block

G .43 @ maximum target number of symbols per packet

Based on the above inputs, the transport parameters T, Z

and N are calculated as follows:

Let,

G=min{ceil(PK,,/F), P/A, G,,,}—the approximate
number of symbols per packet

T=floor(P/(A-G))-A

K,=ceil(F/T)—the total number of symbols in the file

Z=ceill(K/K,,,+x)

N=min{ceil(ceil(K/Z)- T/W), T/A}

The values of G and N derived above should be considered
as lower bounds. It may be advantageous to increase these
values, for example to the nearest power of two. In particular,
the above algorithm does not guarantee that the symbol size,
T, divides the maximum packet size, P, and so it may not be
possible to use the packets of size exactly P. If, instead, G is
chosen to be a value which divides P/A, then the symbol size,
T, will be a divisor of P and packets of size P can be used.

Recommended settings for the input parameters, W, A,
K,z and G, are as follows:

W=256 KB A=4 K, ,,»,~=1024 G,,,,~10

B.3.4.2 Examples

The above algorithm leads to transport parameters as
shown in FIG. 18, assuming the recommended values for W,
A, K, vand G, ., and P=512.

B.4. Streaming

B.4.1. Source Block Construction

A source block is constructed by the transport protocol, for
example as defined in this document, making use of the Sys-
tematic MSCR Forward Error Correction code. The symbol
size, T, to be used for source block construction and the repair
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symbol construction are provided by the transport protocol.
The parameter T might be set so that the number of source
symbols in any source block is at most K, ., +-

Recommended parameters are presented in section B.4.4.

B.4.2. Encoding Packet Construction

As described in B.4.3., each repair packet contains the
SBN, ESI, SBL and repair symbol(s). The number of repair
symbols contained within a repair packet is computed from
the packet length. The ESI values placed into the repair pack-
ets and the repair symbol triples used to generate the repair
symbols are computed as described in Section B.3.2.2.

B.4.3. Transport

This section describes the information exchange between
the MSCR encoder/decoder and any transport protocol mak-
ing use of MSCR forward error correction for streaming. The
MSCR encoder for streaming might use the following infor-
mation from the transport protocol for each source block: the
symbol size, T, in bytes, the number of symbols in the source
block, K, the Source Block Number (SBN) and the source
symbols to be encoded, KT bytes. The MSCR encoder sup-
plies the transport protocol with encoding packet information
comprising, for each repair packet, the SBN, the ESI, the SBL.
and the repair symbol(s). The transport protocol might com-
municate this information transparently to the MSCR
decoder.

B.4.4. Recommended Parameters

B.4.4.1 Parameter Derivation Algorithm

This section provides recommendations for the derivation
of the transport parameter T. This recommendation is based
on the following input parameters:

B the maximum source block size, in bytes

P the maximum repair packet payload size, in bytes, which is a
multiple of A

A the symbol alignment factor, in bytes

Karax the maximum number of source symbols per source block.

Kaan a minimum target on the number of symbols per source block

Gurax a maximum target number of symbols per repair packet

A requirement on these inputs is that ceil(B/P)=K, ,+
Based on the above inputs, the transport parameter T is cal-
culated as follows:

Let G=min {ceil(P-K,,»/B), P/A, G,,x}—the approxi-
mate number of symbols per packet

T=floor(P/(4-G))4

The value of T derived above should be considered as a
guide to the actual value of T used. It may be advantageous to
ensure that T divides into P, or it may be advantageous to set
the value of T smaller to minimize wastage when full size
repair symbols are used to recover partial source symbols at
the end of lost source packets (as long as the maximum
number of source symbols in a source block does not exceed
K, .v)- Furthermore, the choice of T may depend on the
source packet size distribution, e.g., if all source packets are
the same size then it is advantageous to choose T so that the
actual payload size of a repair packet P', where P' is a multiple
of T, is equal to (or as few bytes as possible larger than) the
number of bytes each source packet occupies in the source
block.

Recommended settings for the input parameters, A, K, ;.-
and G, are as follows:

A=4K,,,~1024 G,,,,~10

B.4.4.2 Examples

The above algorithm leads to transport parameters as
shown in FIG. 19, assuming the recommended values for A,
Kymv and G, ., -and P=512.
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B.5. Systematic MSCR Encoder

B.5.1. Encoding Overview

The systematic MSCR encoder is used to generate repair
symbols from a source block that comprises K source sym-
bols.

Symbols are the fundamental data units of the encoding
and decoding process. For each source block (sub-block) all
symbols (sub-symbols) are the same size. The atomic opera-
tion performed on symbols (sub-symbols) for both encoding
and decoding is the exclusive-or operation.

Let C'[0], . . ., C'[K-1] denote the K source symbols.
Let C[0], . .., C[L-1] denote L intermediate symbols.

The first step of encoding is to generate a number, L>K, of
intermediate symbols from the K source symbols. Inthis step,
K source triples (d[0], a[0], b[O]), . . ., (d[K-1], a|K-1],
b[K-1]) are generated using the Trip[ | generator as described
in Section B.5.4.4. The K source triples are associated with
the K source symbols and are then used to determine the L
intermediate symbols C[0], . . . , C[L-1] from the source
symbols using an inverse encoding process. This process can
be can be realized by a MSCR decoding process.

Certain “pre-coding relationships” must hold within the L.
intermediate symbols. Section B.5.2 describes these relation-
ships and how the intermediate symbols are generated from
the source symbols.

Once the intermediate symbols have been generated, repair
symbols are produced and one or more repair symbols are
placed as a group into a single data packet. Each repair sym-
bol group is associated with an Encoding Symbol ID (ESI)
and a number, G, of encoding symbols. The ESI is used to
generate a triple of three integers, (d, a, b) for each repair
symbol, again using the Trip[ | generator as described in
Section B.5.4.4. This is done as described in Sections B.3 and
B.4 using the generators described in Section B.5.4. Then,
each (d,a,b)-triple is used to generate the corresponding
repair symbol from the intermediate symbols using the
LTEnc[K, C[0], ..., C[L-1], (d,a,b)] generator described in
Section B.5.4.3.

B.5.2. First Encoding Step: Intermediate Symbol Genera-
tion

B.5.2.1General

The first encoding step is a pre-coding step to generate the
L intermediate symbols C[0], . . ., C[L-1] from the source
symbols C'[0], . . ., C'[K-1]. The intermediate symbols are
uniquely defined by two sets of constraints:

1. The intermediate symbols are related to the source symbols
by a set of source symbol triples. The generation of the source
symbol triples is defined in Section B.5.2.2 using the Trip| |
generator as described in Section B.5.4.4.

2. A set of pre-coding relationships hold within the interme-
diate symbols themselves. These are defined in Section
B.5.23.

The generation of the L intermediate symbols is then
defined in Section 5.2.4.

B.5.2.2 Source Symbol Triples

Each of the K source symbols is associated with a triple
(d[i], ali], b[i]) for 0=i<K. The source symbol triples are
determined using the Triple generator defined in Section
B.5.4.4 as:

For each i, 0=i<K
(d[i}, a[i], b[i])=Trip(K, i

8.5.2.3 Pre-Coding Relationships

The pre-coding relationships amongst the L intermediate
symbols are defined by expressing the last [.-K intermediate
symbols in terms of the first K intermediate symbols.
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The last L-K intermediate symbols C[K], . . . , C[L-1]
comprise S LDPC symbols and H Half symbols The values of
S and H are determined from K as described below. Then
L=K+S+H.
Let
X be the smallest positive integer such that X-(X-1)=2-K.
S be the smallest prime integer such that S=ceil(0.01-K)+X
H be the smallest integer such that choose (H, ceil(H/2))
=zK+S
H'=ceil(H/2)L=K+S+H

C[0], . .., C[K-1] denote the first K intermediate symbols
C[K], ..., C[K+S-1] denote the S LDPC symbols, initialised
to zero

C[K+S], ..., C[L-1] denote the H Half symbols, initialised
to zero

The S LDPC symbols are defined to be the values of
C[K], ..., CI[K+S-1] at the end of the following process:
Fori=0, ..., K-1do
a=1+(tloor(i/S) % (S-1))
b=1%S
C[K+b]=C[K+b]"C[i]
b=(b+a) % S
C[K+b]=C[K+b]"C[i]
b=(b+a) % S
C[K+b]=C[K+b]"C[i]

The H Half symbols are defined as follows:

Let

gli]=i “(floor(i/2)) for all positive integers i

Note: g[i] is the Gray sequence, in which each element differs
from the previous one in a single bit position

g[j, k] denote the j* element, j=0, 1,2, . . ., of the subsequence
of g[i] whose elements have exactly k non-zero bits in their
binary representation

Then, the Half symbols are defined as the values of C[K+
S], ..., C[L-1] after the following process:

Forh=0, ..., H-1do

Forj=0, ..., K+S-1do

If bit h of g[j,H'] is equal to 1 then C[h+K+S]=C[h+K+S]"
C[jl-

B.5.2.4 Intermediate Symbols

B.5.2.4.1 Definition

Given the K source symbols C'[0], C'[1], . .., C'[K-1] the
L intermediate symbols C[0], C[1], . . ., C[L-1] are the
uniquely defined symbol values that satisfy the following
conditions:

1. The K source symbols C'[0], C'[1], ..
K constraints
C'i]=LTEnc[K, (C[O], ..
1, O=i<K.

2.The L intermediate symbols C[0], C[1], . .., C[L-1] satisfy
the pre-coding relationships defined in B.5.2.3.

B.5.2.4.2 Calculation of Intermediate Symbols

This subsection describes a possible method for calcula-
tion of the L. intermediate symbols C[0], C[1], ..., C[L-1]
satisfying the constraints in B.5.2.4.1

The generator matrix G for a code which generates N
output symbols from K input symbols is an NxK matrix over
GF(2), where each row corresponds to one of the output
symbols and each column to one of the input symbols and
where the i output symbol is equal to the sum of those input
symbols whose column contains a non-zero entry in row i.

Then, the L. intermediate symbols can be calculated as
follows:

Let
C denote the column vector of the L. intermediate symbols,
Clol, C[1y, ..., C[L-1].

., C'[K-1] satisfy the

.. C[L~11), (d[i]. a[i], b[i])]. for all
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D denote the column vector comprising S+H zero symbols
followed by the K source symbols C'[0], C'[1], C'[K-1]
Then the above constraints define an L.xI matrix over GF(2),
A, such that:
A-C=D

The matrix A can be constructed as follows:
Let:
G; ppce be the SxK generator matrix of the LDPC symbols.
So,
Grppc(ClO], . . ., CIK-1)"=(C[K], . . ., C[K+S-1])T
Gy,yrbe the Hx(K+S) generator matrix of the Half symbols,
So,
Grarf (CIO], . .., C[S+K-1])"=(C[K+S], ..
I be the SxS identity matrix
1;; be the HxH identity matrix
0, ;7 be the SxH zero matrix
G, be the KL generator matrix of the encoding symbols
generated by the LT Encoder.
So,
G, (C[0], ..., CIL-1)"™=(C1], ..., C[K-1])7
ie. Gyp =1 if and only if C[i] is included in the symbols
which are XORed to produce LTEnc[K, (C[0], ..., C[L-1]),
(d[il, alil. bLiDI.
Then:
The first S rows of A are equal to G ppcllslZ g 7
The next H rows of A are equal to G, A1,
The remaining K rows of A are equal to G, ;.

The matrix A is depicted in FIG. 20. The intermediate
symbols can then be calculated as:

., C[K+S+H-1])"

C=4""D

The source triples are generated such that for any K matrix
A has full rank and is therefore invertible. This calculation can
be realized by applying a MSCR decoding process to the K
source symbols C'[0], C'[1], . . ., C'[K-1] to produce the L.
intermediate symbols C[0], C[1], ..., C[L-1].

To efficiently generate the intermediate symbols from the
source symbols, it is recommended that an efficient decoder
implementation such as that described in Section B.6 be used.
The source symbol triples are designed to facilitate efficient
decoding of the source symbols using that algorithm.

B.5.3. Second Encoding Step: LT Encoding

In the second encoding step, the repair symbol with ESI X
is generated by applying the generator LTEnc[K, (C[0],
C[1],...,C[L-1]), (d, a, b)] defined in Section B.5.4 to the L
intermediate symbols C[0], C[1], ..., C[L-1] using the triple
(d, a, b)=Trip[K,X] generated according to Sections B.3.2.2
and B.4.2.

B.5.4. Generators

B.5.4.1 Random Generator

The random number generator Rand[X, i, m] is defined as
follows, where X is a non-negative integer, 1is a non-negative
integer and m is a positive integer and the value produced is an
integer between 0 and m-1. Let V, and V| be arrays of 256
entries each, where each entry is a 4-byte unsigned integer.
These arrays are provided in Section B.7.

Then,
Rand[X, i, m]=(V [(X+) % 256]"V,[(floor(X/256)+i) %
256]) % m

B.5.4.2 Degree Generator

The degree generator Deg[v] is defined as follows, where v
is an integer that is at least O and less than 22°=1048576.

In FIG. 21, find the index j such that {]j-1]=v<{]j]
Deg[v]d[j]

B.5.4.3 LT Encoding Symbol Generator

The encoding symbol generator L[TEnc[K, (C[O],
C[1],..., C[L-1]), (d, a, b)] takes the following inputs:
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K is the number of source symbols (or sub-symbols) for the
source block (sub-block). Let L be derived from K as
described in Section B.5.2, and let L' be the smallest prime
integer greater than or equal to L.
(Clo], C[1], . . ., C[L-1]) is the array of L intermediate
symbols (sub-symbols) generated as described in Section
B52
(d, a, b) is a source triple determined using the Triple genera-
tor defined in Section B.5.3.4, whereby d is an integer denot-
ing an encoding symbol degree, a is an integer between 1 and
L'-1 inclusive and b is an integer between 0 and L'-1 inclu-
sive.

The encoding symbol generator produces a single encod-
ing symbol as output, according to the following algorithm:
While (bzL) do b=(b+a) % L'

LTEnc[K, (C[O0], C[1], ..., C[L-1]), (d, a, b)]=C[b].
Forj=1, ..., min(d-1, L.-1) do

b=(b+a) % L'

While (bzL) do b=(b+a) % L'

LTEnc[K, (C[0], C[1], . . ., C[L-1]), (d, a, b)]=LTEnc[K,
(C[o], C[1], . . ., C[L-1]), (d, a, b)]"C[b]

B.5.4.4 Triple Generator

The triple generator Trip|K,X] takes the following inputs:
K The number of source symbols
X An encoding symbol ID
Let
L be determined from K as described in Section B.5.2
L' be the smallest prime that is greater than or equal to L
Q=65521, the largest prime smaller than 2"¢.

J(K) be the systematic index associated with K, as defined in
Appendix A

The output of the triple generator is a triples, (d, a, b)

determined as follows:

1. A=(53591+IJ(K)-997) % Q

2. B=10267-(J(K)+1) % Q
3.Y=B+X-A) % Q

4. v=Rand[Y, 0, 2*°]

5. d=Deg|v]

6. a=1+Rand[Y, 1, L'-1]

7. b=Rand[Y, 2, L]

B.6 FEC Decoder Implementations

B.6.1 General

This section describes an efficient decoding algorithm for
the MSCR codes described in this specification. Note that
each received encoding symbol can be considered as the value
of an equation amongst the intermediate symbols. From these
simultaneous equations, and the known pre-coding relation-
ships amongst the intermediate symbols, any algorithm for
solving simultaneous equations can successfully decode the
intermediate symbols and hence the source symbols. How-
ever, the algorithm chosen has a major effect on the compu-
tational efficiency of the decoding.

B.6.2 Decoding a Source Block

B.6.2.1 General

It is assumed that the decoder knows the structure of the
source block it is to decode, including the symbol size, T, and
the number K of symbols in the source block.

From the algorithms described in Sections B.5, the MSCR
decoder can calculate the total number L=K+S+H of pre-
coding symbols and determine how they were generated from
the source block to be decoded. In this description it is
assumed that the received encoding symbols for the source
block to be decoded are passed to the decoder. Furthermore,
for each such encoding symbol it is assumed that the number
and set of intermediate symbols whose exclusive-or is equal
to the encoding symbol is passed to the decoder. In the case of
source symbols, the source symbol triples described in Sec-
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tion 8.5.2.2 indicate the number and set of intermediate sym-
bols which sum to give each source symbol.

Let NzK be the number of received encoding symbols for
a source block and let M=S+H+N. The following M by L bit
matrix A can be derived from the information passed to the
decoder for the source block to be decoded. Let C be the
column vector of the L. intermediate symbols, and let D be the
column vector of M symbols with values known to the
receiver, where the first S+H of the M symbols are zero-
valued symbols that correspond to LDPC and Half symbols
(these are check symbols for the LDPC and Half symbols, and
not the LDPC and Half symbols themselves), and the remain-
ing N ofthe M symbols are the received encoding symbols for
the source block. Then, A is the bit matrix that satisfies
A-C=D, where here - denotes matrix multiplication over
GF[2]. In particular, A[i, j]=1 if the intermediate symbol
corresponding to index j is exclusive-ORed into the LDPC,
Half or encoding symbol corresponding to index i in the
encoding, or if index i corresponds to a LDPC or Half symbol
and index j corresponds to the same LDPC or Half symbol.
For all other i and j, Ali, j]=0.

Decoding a source block is equivalent to decoding C from
known A and D. It is clear that C can be decoded if and only
if the rank of A over GF[2] is L. Once C has been decoded,
missing source symbols can be obtained by using the source
symbol triples to determine the number and set of intermedi-
ate symbols which are exclusive-ORed to obtain each missing
source symbol.

The first step in decoding C is to form a decoding schedule.
In this step A is converted, using Gaussian elimination (using
row operations and row and column reorderings) and after
discarding M-L rows, into the L by L identity matrix. The
decoding schedule comprises the sequence of row operations
and row and column re-orderings during the Gaussian elimi-
nation process, and only depends on A and not on D. The
decoding of C from D can take place concurrently with the
forming of the decoding schedule, or the decoding can take
place afterwards based on the decoding schedule.

The correspondence between the decoding schedule and
the decoding of C is as follows. Let ¢[0]=0, c[1]=1 . . .,
c[L-1]=L-1 and d[0]=0, d[1]=1 . . ., d[M-1]=M-1 initially.

Each time row i of A is exclusive-ORed into row i' in the
decoding schedule then in the decoding process symbol
DI[d[i]] is exclusive-ORed into symbol D[d[1']].

Each time row i is exchanged with row i' in the decoding
schedule then in the decoding process the value of d[i] is
exchanged with the value of d[i"].

Each time column j is exchanged with column j' in the
decoding schedule then in the decoding process the
value of c[j] is exchanged with the value of c[j'].

From this correspondence it is clear that the total number of
exclusive-ORs of symbols in the decoding of the source block
is the number of row operations (not exchanges) in the Gaus-
sian elimination. Since A is the L by L identity matrix after the
Gaussian elimination and after discarding the last M-L rows,
it is clear at the end of successful decoding that the [ symbols
D[d[0]], D[d[1]], . . ., D[d[L-1]] are the values of the L
symbols C[c[0]], C[c[1]], . . ., C[¢[L-1]].

The order in which Gaussian elimination is performed to
form the decoding schedule has no bearing on whether or not
the decoding is successful. However, the speed of the decod-
ing depends heavily on the order in which Gaussian elimina-
tion is performed. (Furthermore, maintaining a sparse repre-
sentation of A is crucial, although this is not described here).
The remainder of this section describes an order in which
Gaussian elimination could be performed that is relatively
efficient.
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B.6.2.2 First Phase

The first phase of the Gaussian elimination the matrix A is
conceptually partitioned into submatrices. The submatrix
sizes are parameterized by non-negative integers i and u
which are initialized to 0. The submatrices of A are:

(1) The submatrix I defined by the intersection of the first i
rows and first i columns. This is the identity matrix at the end
of each step in the phase.

(2) The submatrix defined by the intersection of the first i rows
and all but the first i columns and last u columns. All entries
of this submatrix are zero.

(3) The submatrix defined by the intersection of the first i
columns and all but the first i rows. All entries of this subma-
trix are zero.

(4) The submatrix U defined by the intersection of all the rows
and the last u columns.

(5) The submatrix V formed by the intersection of all but the
first i columns and the last u columns and all but the first i
rOws.

FIG. 22 illustrates the submatrices of A. At the beginning of
the first phase V=A. In each step, a row of A is chosen. The
following graph defined by the structure of V is used in
determining which row of A is chosen. The columns that
intersect V are the nodes in the graph, and the rows that have
exactly 2 ones in'V are the edges of the graph that connect the
two columns (nodes) in the positions of the two ones. A
component in this graph is a maximal set of nodes (columns)
and edges (rows) such that there is a path between each pair of
nodes/edges in the graph. The size of a component is the
number of nodes (columns) in the component.

There are at most L steps in the first phase. The phase ends
successfully when i+u=L, i.e., when V and the all zeroes
submatrix above V have disappeared and A comprises I, the
all zeroes submatrix below I, and U. The phase ends unsuc-
cessfully in decoding failure if at some step before V disap-
pears there is no non-zero row in 'V to choose in that step. In
each step, a row of A is chosen as follows:

If all entries of V are zero then no row is chosen and decoding
fails.

Let r be the minimum integer such that at least one row of A
has exactly r ones in V.

If r=2 then choose a row with exactly r ones in V with mini-
mum original degree among all such rows.

Ifr=2 then choose any row with exactly 2 ones in'V that is part
of'a maximum size component in the graph defined by X.

After the row is chosen in this step the first row of A that
intersects V is exchanged with the chosen row so that the
chosen row is the first row that intersects V. The columns of A
among those that intersect V are reordered so that one of the
r ones in the chosen row appears in the first column of V and
so that the remaining r-1 ones appear in the last columns of V.
Then, the chosen row is exclusive-ORed into all the other
rows of A below the chosen row that have a one in the first
column of V. Finally, i is incremented by 1 and u is incre-
mented by r-1, which completes the step.

B.6.2.3 Second Phase

The submatrix U is further partitioned into the first i rows,
U, per» and the remaining M—i rows, Uy,,,..,. Gaussian elimi-
nation is performed in the second phase on U,,,, ., to either
determine that its rank is less than u (decoding failure) or to
convert it into a matrix where the first u rows is the identity
matrix (success of the second phase). Call this u by u identity
matrix [,. The M-L rows of A that intersect U, -1, are
discarded. After this phase A has L. rows and L columns.

B.6.2.4 Third Phase

After the second phase the only portion of A which needs to
be zeroed out to finish converting A into the L by L identity
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matrixis U,,,.,. The number of rows i of the submatrix U,
is generally much larger than the number of columns u of
U, ,per To zero out U, ., efficiently, the following precom-
putation matrix U' is computed based on [, in the third phase
and then U' is used in the fourth phase to zero out U, ... The
u rows of I, are partitioned into ceil(u/8) groups of 8 rows
each. Then, for each group of 8 rows all non-zero combina-
tions of the 8 rows are computed, resulting in 28-1=255 rows
(this can be done with 28-8-1=247 exclusive-ors of rows per
group, since the combinations of Hamming weight one that
appearin I, do not need to be recomputed). Thus, the resulting
precomputation matrix U' has ceil(u/8)-255 rows and u col-
umns. Note that U' is not formally a part of matrix A, but will
be used in the fourth phase to zero out U

B.6.2.5 Fourth Phase

For each ofthe first i rows of A, for each group of 8 columns
in the U, submatrix of this row, if the set of 8 column
entries in U, are not all zero then the row of the precom-
putation matrix U' that matches the pattern in the 8 columns is
exclusive-ORed into the row, thus zeroing out those 8 col-
umns in the row at the cost of exclusive-oring one row of U’
into the row.

After this phase A is the L. by L identity matrix and a
complete decoding schedule has been successtully formed.
Then, the corresponding decoding comprising exclusive-OR-
ing known encoding symbols can be executed to recover the
intermediate symbols based on the decoding schedule.

The triples associated with all source symbols are com-
puted according to B.5.2.2. The triples for received source
symbols are used in the decoding. The triples for missing
source symbols are used to determine which intermediate
symbols need to be exclusive-ORed to recover the missing
source symbols.

Some Properties of Some Multi-Stage Codes

In most of the examples described above, the input and
output symbols encode 98 for the same number of bits and
each output symbol is placed in one packet (a packet being a
unit of transport that is either received in its entirety or lost in
its entirety). In some embodiments, the communications sys-
tem is modified so that each packet contains several output
symbols. The size of an output symbol value is then set to a
size determined by the size of the input symbol values in the
initial splitting of the file or blocks of the stream into input
symbols, based on a number of factors. The decoding process
remains essentially unchanged, except that output symbols
arrive in bunches as each packet is received.

The setting of input symbol and output symbol sizes is
usually dictated by the size of the file or block of the stream
and the communication system over which the output sym-
bols are to be transmitted. For example, if a communication
system groups bits of data into packets of a defined size or
groups bits in other ways, the design of symbol sizes begins
with the packet or grouping size. From there, a designer
would determine how many output symbols will be carried in
one packet or group and that determines the output symbol
size. For simplicity, the designer would likely set the input
symbol size equal to the output symbol size, but if the input
data makes a different input symbol size more convenient, it
can be used.

The above-described encoding process produces a stream
of packets containing output symbols based on the original
file or block of the stream. Each output symbol in the stream
is generated independently of all other output symbols, and
there is no lower or upper bound on the number of output
symbols that can be created. A key is associated with each
output symbol. That key, and some contents of the input file or
block of the stream, determines the value of the output sym-

upper*
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bol. Consecutively generated output symbols need not have
consecutive keys, and in some applications it would be pref-
erable to randomly generate the sequence of keys, or pseudo-
randomly generate the sequence.

Multi-stage decoding has a property that if the original file
or block of the stream can be split into K equal-sized input
symbols and each output symbol value is the same length as
an input symbol value, then the file or block can be recovered
from K+A output symbols on average, with very high prob-
ability, where A is small compared to K. For example, for the
weight distributions introduced above, the probability that the
value of A exceeds a*K is at most 107'2 if K is larger than
19,681, and it is at most 107'° for any value of K. Since the
particular output symbols are generated in a random or pseu-
dorandom order, and the loss of particular output symbols in
transit is assumed random, some small variance exists in the
actual number of output symbols needed to recover the input
file or block. In some cases, where a particular collection of
K+A packets are not enough to decode the entire input file or
block, the input file or block is still recoverable if the receiver
can gather more packets from one or more sources of output
packets.

Because the number of output symbols is only limited by
the resolution of I, well more than K+A output symbols canbe
generated. For example, if I is a 32-bit number, 4 billion
different output symbols could be generated, whereas the file
or block of'the stream could include K=50,000 input symbols.
In some applications, only a small number of those 4 billion
output symbols may be generated and transmitted and it is a
near certainty that an input file or block of a stream can be
recovered with a very small fraction of the possible output
symbols and an excellent probability that the input file or
block can be recovered with slightly more than K output
symbols (assuming that the input symbol size is the same as
the output symbol size).

In some applications, it may be acceptable to not be able to
decode all of the input symbols, or to be able to decode all of
input symbols, but with a relatively low probability. In such
applications, a receiver can stop attempting to decode all of
the input symbols after receiving K+A output symbols. Or,
the receiver can stop receiving output symbols after receiving
less than K+A output symbols. In some applications, the
receiver may even only receive K or less output symbols.
Thus, it is to be understood that in some embodiments of the
present invention, the desired degree of accuracy need not be
complete recovery of all the input symbols.

Further, in some applications where incomplete recovery is
acceptable, the data can be encoded such that all of the input
symbols cannot be recovered, or such that complete recovery
of the input symbols would require reception of many more
output symbols than the number of input symbols. Such an
encoding would generally require less computational
expense, and may thus be an acceptable way to decrease the
computational expense of encoding.

It is to be understood that the various functional blocks in
the above-described figures may be implemented by a com-
bination of hardware and/or software, and that in specific
implementations some or all of the functionality of some of
the blocks may be combined. Similarly, it is also to be under-
stood that the various methods described herein may be
implemented by a combination of hardware and/or software.

The above description is illustrative and not restrictive.
Many variations of the invention will become apparent to
those of skill in the art upon review of this disclosure. The
scope of the invention should, therefore, be determined not
with reference to the above description, but instead should be
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determined with reference to the appended claims along with
their full scope of equivalents.

What is claimed is:
1. A method of encoding data for transmission from a
source to a destination over a communications channel,
wherein the data for transmission is representable by an
ordered set of input symbols, the method comprising:
generating a plurality of redundant symbols from the
ordered set of input symbols, wherein each redundant
symbol in the plurality of redundant symbols is calcu-
lated using one or more of the ordered set of input
symbols; and
generating a plurality of output symbols from a combined
set of symbols including the input symbols and the
redundant symbols, wherein the number of possible out-
put symbols is much larger than the number of symbols
in the combined set of symbols, wherein at least one
output symbol is generated from more than one symbol
in the combined set of symbols and from less than all of
the symbols in the combined set of symbols,
wherein the generating of the plurality of redundant sym-
bols is done using a deterministic process that ensures
low common membership among redundant symbols,

wherein common membership between two redundant
symbols is the set of input symbols that both redundant
symbols depend upon and wherein low common mem-
bership between two redundant symbols is present when
the number of input symbols that both redundant sym-
bols depend upon is less than a threshold as given by said
process and

wherein for each input symbol there is a predetermined

number of redundant symbols that depend upon said
input symbol.

2. The method of claim 1, further comprising transmitting
the plurality of output symbols over said communications
channel.

3. The method of claim 1, further comprising storing the
plurality of output symbols on a storage media.

4. The method of claim 1, wherein the plurality of redun-
dant symbols is generated according to a LDPC code.

5. The method of claim 1, wherein output symbols are such
that the ordered set of input symbols can be regenerated from
any predetermined number, N, of the output symbols, where
N is slightly larger than the number of input symbols.

6. The method of claim 1, wherein the output symbols are
such that there is a high probability that the ordered set of
input symbols can be regenerated from N of the output sym-
bols where N is at least as large as the number of input
symbols.

7. The method of claim 1, wherein the output symbols are
such that G of the ordered set of input symbols can be regen-
erated from K of'the output symbols where K is the number of
input symbols and G is less than K.

8. The method of claim 1, wherein at most G input symbols
can be regenerated from any number of output symbols,
wherein G is less than the number of input symbols in the
ordered set of input symbols.

9. The method of claim 1, wherein generating a plurality of
redundant symbols includes, for each redundant symbol:

determining t distinct input symbols according to a weight

distribution; and

computing each redundant symbol as the XOR of the t

distinct input symbols.

10. The method of claim 1, further comprising transmitting
the plurality of output symbols over said communications
channel, wherein the step of generating the plurality of output
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symbols is performed substantially concurrently with the step
of transmitting the plurality of output symbols.

11. The method of claim 1, wherein the plurality of redun-
dant symbols comprises static symbols, Hamming symbols
and padding symbols, wherein the sum of the number of
symbols is selected to be a prime number.

12. The method of claim 1, wherein the predefined thresh-
old is six, such that for any two distinct redundant symbols,
the sets of input symbols that each of those two distinct
redundant symbols depend on have at most six input symbols
in common.

13. The method of claim 1, wherein generating the plurality
of redundant symbols using one or more of the ordered set of
input symbols comprises:

initializing an array C[K], ..., C[K+S-1] so that each array
element is a known value, wherein K is the number of
input symbols and S is the number of redundant symbols
to be generated and C[0], .. ., C[K-1] corresponds to the
K input symbols;

performing the following steps, with a counter i=0,
wherein a and b are intermediate variables, “%” repre-
sents a modulo operation, floor( ) is a function represent-
ing a highest integer value that is less than the function’s
argument, and ‘" represents a bitwise XOR operation:

(1) a=1+(floor(i/S) % (S-1))

@)b=1%S

(3) C[K+b]=C[K+b]"C[i]

4) b=(b+a) % S

(5) C[K+b]=C[K+b]"C[i]

(6) b=(b+a) % S

(7) C[K+b]=C[K+b]"C[i]

repeating those steps, for each value of counter i from 1 to
K-1; and

outputting at least the resulting array C[K], . .
as the plurality of S redundant symbols.

14. The method of claim 13, wherein S is the smallest
prime integer such that Szceil(0.01-K)+X, where X is the
smallest positive integer such that X-(X-1)=2-K.

15. The method of claim 1, wherein for each input symbol
the predetermined number of redundant symbols that depend
upon said input symbol is three.

16. A system for encoding data for transmission from a
source to a destination over a communications channel,
wherein the data for transmission is representable by an
ordered set of input symbols, the system comprising:

a static encoder configured to generate a plurality of redun-
dant symbols from the ordered set of input symbols,
wherein each redundant symbol in the plurality of
redundant symbols is calculated using one or more of the
ordered set of input symbols; and

a dynamic encoder communicatively coupled to the static
encoder and configured to generate a plurality of output
symbols from a combined set of symbols including the
input symbols and the redundant symbols, wherein the
number of possible output symbols is much larger than
the number of symbols in the combined set of symbols,
wherein at least one output symbol is generated from
more than one symbol in the combined set of symbols
and from less than all of the symbols in the combined set
of' symbols,

wherein the static encoder is configured to generate the
plurality of redundant symbols using a deterministic
process that ensures low common membership among
redundant symbols,

wherein common membership between two redundant
symbols is the set of input symbols that both redundant
symbols depend upon and wherein low common mem-
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bership between two redundant symbols is present when
the number of input symbols that both redundant sym-
bols depend upon is less than a threshold as given by said
process and

wherein for each input symbol there is a predetermined

number of redundant symbols that depend upon said
input symbol.
17. The system of claim 16, further comprising a transmit
module communicatively coupled to the dynamic encoder
and configured to transmit the plurality of output symbols
over said communications channel.
18. The system of claim 16, wherein the static encoder is
configured to generate the plurality of redundant symbols
using one or more of the ordered set of input symbols includ-
ing:
initializing an array C[K], . .., C[K+S-1] so that each array
element is a known value, wherein K is the number of
input symbols and S is the number of redundant symbols
to be generated and C[0], .. ., C[K-1] corresponds to the
K input symbols;

performing the following steps, with a counter i=0,
wherein a and b are intermediate variables, “%” repre-
sents a modulo operation, floor( ) is a function represent-
ing a highest integer value that is less than the function’s
argument, and ‘" represents a bitwise XOR operation:

(1) a=1+(floor(i/S) % (S-1))

2)b=1%S

(3) C[K+b]=C[K+b]"C[i]

(4)b=(b+a) % S

(5) C[K+b]=C[K+b]"C[i]

(6) b=(b+a) % S

(7) C[K+b]=C[K+b]"C[i]

repeating those steps, for each value of counter i from 1 to

K-1; and

outputting at least the resulting array C[K], . .

as the plurality of S redundant symbols.

19. The system of claim 18, wherein S is the smallest prime
integer such that Szceil(0.01-K)+X, where X is the smallest
positive integer such that X-(X-1)=2-K.

20. A non-transitory computer-readable medium for use
with electronics capable of executing instructions read from
the computer-readable medium in order to implement encod-
ing data for transmission from a source to a destination over
a communications channel, wherein the data for transmission
is representable by an ordered set of input symbols, the com-
puter-readable medium having stored thereon:

program code for generating a plurality of redundant sym-

bols from the ordered set of input symbols, wherein each
redundant symbol in the plurality of redundant symbols
is calculated using one or more of the ordered set of input
symbols; and

program code for generating a plurality of output symbols

from a combined set of symbols including the input
symbols and the redundant symbols, wherein the num-
ber of possible output symbols is much larger than the
number of symbols in the combined set of symbols,
wherein at least one output symbol is generated from
more than one symbol in the combined set of symbols
and from less than all of the symbols in the combined set
of symbols,

wherein the program code for generating the plurality of

redundant symbols uses a deterministic process that
ensures low common membership among redundant
symbols,

wherein common membership between two redundant

symbols is the set of input symbols that both redundant
symbols depend upon and wherein low common mem-
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bership between two redundant symbols is present when
the number of input symbols that both redundant sym-
bols depend upon is less than a threshold as given by said
process and

wherein for each input symbol there is a predetermined
number of redundant symbols that depend upon said
input symbol.

21. A system for encoding data for transmission from a
source to a destination over a communications channel,
wherein the data for transmission is representable by an
ordered set of input symbols, the system comprising:

means for generating a plurality of redundant symbols
from the ordered set of input symbols, wherein each
redundant symbol in the plurality of redundant symbols
is calculated using one or more of the ordered set of input
symbols; and

means for generating a plurality of output symbols from a
combined set of symbols including the input symbols
and the redundant symbols, wherein the number of pos-
sible output symbols is much larger than the number of
symbols in the combined set of symbols, wherein at least
one output symbol is generated from more than one
symbol in the combined set of symbols and from less
than all of the symbols in the combined set of symbols,

wherein the means for generating the plurality of redun-
dant symbols includes means for using a deterministic
process that ensures low common membership among
redundant symbols,

wherein common membership between two redundant
symbols is the set of input symbols that both redundant
symbols depend upon and wherein low common mem-
bership between two redundant symbols is present when
the number of input symbols that both redundant sym-
bols depend upon is less than a threshold as given by said
process and

wherein for each input symbol there is a predetermined
number of redundant symbols that depend upon said
input symbol.

22. A system for decoding encoded data received over a
communications channel transmitted from a source to a des-
tination, the system comprising:

a receive module configured to receive a predetermined
number, N, of symbols, wherein the received symbols
comprise a combination of received source symbols and
received repair symbols generated from a plurality of an
ordered set of K source symbols; and

a decoder communicatively coupled to the receive module
and configured to generate to a desired degree of accu-
racy one or more unreceived source symbols of the
ordered set of K source symbols,

wherein each received symbol has an associated symbol
relation that is determined by a systematic index, J(K),
where J(K) is determined by K,

wherein the value of each unreceived source symbol is
determined by the associated symbol relation and a plu-
rality of L intermediate symbol values, wherein L is at
least K,

wherein the L intermediate symbol values are determined
by the K source symbol values and by the K symbol
relations associated with the K source symbols and by a
set of L-K pre-coding relations, and

wherein the L intermediate symbol values can be generated
to a desired degree of accuracy from the N received
source and repair symbols.

23. The system of claim 22, wherein each source symbol

has an associated encoding symbol identifier (“ESI”) that
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identifies the source symbol, wherein the systematic index
J(K) and a value X, wherein X is a valid ESI, determines the
symbol relation for the source symbol identified by ESI X.
24. The system of claim 22, wherein the number L-K of
pre-coding relations comprises a first set of S pre-coding
relations and a second set of H pre-coding relations, and
wherein the L intermediate symbols comprises a first set of K
intermediate symbols, a second set of S intermediate sym-
bols, and a third set of H intermediate symbols.
25. The system of claim 22, wherein the K source symbols
correspond to a source block, wherein the source block is
defined by a transport protocol for streaming data.
26. A non-transitory computer-readable medium for use
with electronics capable of executing instructions read from
the computer-readable medium in order to implement decod-
ing encoded data received over a communications channel
transmitted from a source to a destination, the computer-
readable medium having stored thereon:
program code for receiving a predetermined number, N, of
symbols, wherein the received symbols comprise a com-
bination of received source symbols and received repair
symbols generated from a plurality of an ordered set of
K source symbols; and

program code for generating to a desired degree of accu-
racy one or more unreceived source symbols of the
ordered set of K source symbols,
wherein each received symbol has an associated symbol
relation that is determined by a systematic index, J(K),
where J(K) is determined by K,

wherein the value of each unreceived source symbol is
determined by the associated symbol relation and a plu-
rality of L intermediate symbol values, wherein L is at
least K,

wherein the L intermediate symbol values are determined
by the K source symbol values and by the K symbol
relations associated with the K source symbols and by a
set of L.-K pre-coding relations, and

wherein the L intermediate symbol values can be generated

to a desired degree of accuracy from the N received
source and repair symbols.
27. A system for decoding encoded data received over a
communications channel transmitted from a source to a des-
tination, the system comprising:
means for receiving a predetermined number, N, of sym-
bols, wherein the received symbols comprise a combi-
nation of received source symbols and received repair
symbols generated from a plurality of an ordered set of
K source symbols; and

means for generating to a desired degree of accuracy one or
more unreceived source symbols of the ordered set of K
source symbols,
wherein each received symbol has an associated symbol
relation that is determined by a systematic index, J(K),
where J(K) is determined by K,

wherein the value of each unreceived source symbol is
determined by the associated symbol relation and a plu-
rality of L intermediate symbol values, wherein L is at
least K,

wherein the L intermediate symbol values are determined
by the K source symbol values and by the K symbol
relations associated with the K source symbols and by a
set of L.-K pre-coding relations, and

wherein the L intermediate symbol values can be generated

to a desired degree of accuracy from the N received
source and repair symbols.
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